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ADMIVE ANTENNA SUBARRAYING
USING A WEIGHTED BUTLER MATRIX

INTRODUCTION

A fully adaptive array is one in which every element of the array is individually controlied adap-
tively. In theory, this provides the necessary degrees of freedom to lower all of the deterministic
sidelobes to any arbitrary level. A partially adaptive array is one in which elements are controlled in

groups (the subarray approach) or in which only certain elements called auxiliary elements are made
controllable.

The partially adaptive array has not been extensively studied as evidenced by the lack of refer-
ences available in the literature [1-5]. Chapman [3] initiated one of the earliest studies (circa 1974)
into exploring how to effectively combine the N elements of an entire planar antenna array into a col-
lection of L subarrays. He developed the row-column precision antenna array (RCPAA) in which each
element signal is split into two paths: a row path and a column path. All the elements of a given row or
column are added together, and all the row outputs and column outputs are then adaptively combined.
Morgan (2] studied the technique of just using auxiliary elements to perform the adaptation. He
showed that the correllation coefficient between the adaptive element spatial vectors plays a key role in
characterizing the performance of a partially adaptive array. A significant difference in array perfor-
mance can occur if the array elements selected for adaptive control are not properly chosen.

Obviously, the fully adaptive configuration is preferred since it offers the most control over the
response of the array. However, the typical array may have many elements. This poses several
immediate problems. Implementing an adaptive array with many degrees of freedom can have consid-
erable impact on the total cost of the array. This alone, however, is not sufficient grounds for rejecting
the idea. Processor implementation does, however, pose a more serious problem for a system of this

size. In order to appreciate this, it is necessary to elaborate somewhat upon the ways in which such a
processor can be implemented.

For an adaptive processor with N degrees of freedom, each of the N input channels is multiplied

by a complex weight and summed to form the output. The adaptive weights are determined according
to a control law [6]

. MW = .8, )
where M is an N x N matrix of the cross-covariances of the signals in the N channels, W is an N-
element vector of the weights, u is an arbitrary nonzero constant, and S is a vector representation of
the desired signal in each channel. Solving for the weights is equivalent to solving a set of N simul-
taneous linear equations. The most straightforward way in which to implement a processor to do this is
to use a form of the Howells control loop in analog hardware [7], or the Widrow LMS algorithm [8], or
one of its derivatives in a digital machine. Both are realizations of the "steepest descent” method, an
iterative technique employed in the minimization of a function. This is a reliable method of solution in
this application since it can be shown that the surface described by the output residue as a function of
W is a concave quadratic hypersurface and, as such, contains only one minimum. The problem with
this approach is that the convergence rate depends upon the particular physical configuration of the

Manuscript submitted July 15, 1982.
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interference sources and the array. Mathematically, the transient response of the processor is 3 func-
tion of the eigenvalues of the covariance matrix M. The spread in the amplitude of the eigenvaluea< can
be considerable and, since the particular configuration of noise sources to be encountered is never
known a priori, the resultant variance in settling time can be large, particularly if the order of M is
large, i.e., a large number of degrees of freedom are used.

Reed et al. [9) have proposed to solve directly for the weights by inverting an estimate of the true
covariance matrix, thereby eliminating the uncertainty of the convergence rate of the iterative method.
This method, too, is subject to limits related to the order of the matrix, M. The number of arithmetic
steps required to obtain the solution by this method is proportional to the cube of the order, N. This,
coupled with the requirement for high numerical accuracy, puts an upper bound on N which is related
to the computation time available and on the cost that can be tolerated.

In addition, if only auxifiary elements are chosen as inputs to the sidelobe cancelier. fammer nul-
ling is effected by the bandwidth-aperture product; i.e., if the number of antenna elements is held con-
stant, as the bandwidth of the jammer or the size of the antenna aperture in terms of wavelengths or
the spacing of the auxiliary elements is made larger, the nulling of the jammer is degraded. This degra-
dation results because as auxiliary antenna elements are spaced farther apart, the input noise signal with
a spread spectrum becomes more uncorrelated between elements. However, it is the correlation
between the signals on the respective antenna elements that allows the adaptive array to sense the
direction of arrival of an undesirable signal and then place a null in the antenna pattern in the direction
of that undesirable signal.

All of these considerations point toward the desirability of reducing the dimensionality of the pro-
cessor while maintaining as much control as possible over the size of a given aperture. Reduction of
the dimensionality of the processor is achieved through subarraying as illustrated in Fig. 1. Here, the
dimensionality is reduced from N to L, where L <N, by using a transformation matrix H which is a
L x N matrix. It is not a trivial problem to specify an effective H matrix. If the M matrix is specified
improperly, the overall signal-to-noise ratio can degrade significantly as a function of the direction of
arrival angles of the jamming.

ANTENNA ELEMENT VOLTAGES

43

(SUBARRAY BEAMFORMER)

Fig. 1 ~ Adaptive subarray configuration
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PROCES

This report describes an effective procedure for specifying the H matrix. However, the M matrix
will not be a constant as in the RCPAA [3] approach but it will be a function of the noise environment.
In a sense, the H matrix will adapt. We will see in the next section that an effective choice for /M is a
partition of a weighted Butler matrix.

The next section describes the algorithm of specifying H in detail. Then results are presented to
support utility of the subarray algorithm. Specifically it is shown that the maximum signal-to-noise ratio
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possible using no subarraying suffers a smali degradation if an adaptive weighted Butler matrix subarray-
ing scheme is used. Next, the advantages of using this subarraying scheme are presented.

It should be noted that in this treatment of subarraying for simplicity’s sake we deal only with
linear antenna arrays. Later reports will consider planar arrays.

THE WEIGHTED BUTLER MATRIX TRANSFORMATION

Let the transformation, H, seen in Fig. 1 be a Butler matrix. A Butler matrix, B, has the form

11 1 PR [
1 Ty r,2v ce r ﬁ-l
1 r)zv rl(vZN!) .. r’%’(N-l)
1
R P @
I LY~ TAN-D ... pN-DN-D
where
-2
FN - N 3)
and j = v/=1. Note that in this case L = N. If ¥ signifies the input vector and # the output vector
then 4 = BV where i = (u), ..., uy)Tand V= (v, ..., vy)7. (Note that we use u as the output of
the transformation instead of Xy = (x;, ..., x;)7 as depicted in Fig. 1. We do this because we will use
a subset of the u,, k = 1, 2, ... N outputs as inputs to the adaptive processor. These inputs will be
denoted by X) An output, i, of the transformation has the form
1 N-1
uy=-—7= ¥ v,Tk. @
L= IN &

The form of Eq. (4) is recognized as that of a discrete Fourier transform. It transforms v, which
is a function of the position on the array (array space) indicated by n, into angular beam space. Thus,
if there is a jammer located @ degrees off-boresight such that

ve (1, /%, Vs, ., N-Vi6)T 5

where ¢ = (2w d/\) sin#, dis the element separation, and A is the wavelength, then the transformation
indicated by Eq. (4) places most of the jammer power into the transformation output, «,, where k is
the integer value that makes |(2wk/N) — ¢| a minimum.

To illustrate this further, consider the output response of u, vs ¢. We can show using Eqs. (4)
and (5) that

Sinl N(ﬂ - !)
sin? 9—-;-1 ‘ N

Uy =

The output «, as a function of ¢ is shown in Fig. 2. Observe that u, is relatively large if ¢ is close to
(Qmwk/N) but decreases rapidly as [(2wk/N) — ¢! increases. Hence, the transformation by a Butier
matrix tends to orthogonalize the outputs of the matrix transformation, i.e.,

i it
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for i # k. This approximation tends to become better as |/ — k| increases.

As has been shown by past researchers [9-15], the orthogonalization (for example Gram-Schmidt
orthogonalization developed by Lewis and Kretschmer) of the array inputs by preprocessing enhances
the convergence rate of obtaining the optimal adaptive weights. The convergence rate using preprocess-
ing is essentially independent of the eigenvalues of the input covariance matrix and hence, does not
suffer the limitation of the control loop implementations. Hence, the settling times of the weights are
almost as fast as those obtained by using direct matrix inversion [9].

We can extend the concept of using a Butler matrix transformation to that of using a weighted
Butler matrix where

a a2 as ... ay

2 -
a, affy  al'y ... ayrf-!
ay al'}y al} ... ayTFN-D

8)

1
H=75

a azl“ﬁ" asrg,(N—l) GNFkN-”(N_n

Note that we can write H as

H = BA ®

where A is a diagonal matrix with diagonal elements a;, k=1, ..., N. The reason for using the
weights, a,, is to contro! the near-in sidelobe levels of the response of u, vs¢. However, by lowering
the near-in sidelobe levels we also enlarge the beamwidth of the response of u,, k=1, ..., N ¢.
If this occurs, it may then be desirable to beamform as an output every other u,, or every third u,, etc.
Hence, by controlling these sidelobes we can make adjacent outputs more uncorrelated and therefore
enhance the convergence rate. However, by doing this we may lose some desired signal power ratio
because now H may not be unitary transformation.
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For the subarraying technique to be presented, we only use L of the Butler transformed outputs
where L < N. We choose the L outputs as follows (see Fig. 3): Let {x,}, k=1, ..., L be the sub-
set of {sy) k=1, ..., N that is chosen as inputs to the adaptive processor such that x, is always
chosen as one of the L outputs. It can be shown directly that

N
x| = k§ aQv,. a10)

Thus we use x; as the main antenna channel where the weights a,, k = 1, ..., Ncan also be specified
to control the steering, sidelobe level, beamwidth, ect. of the antenna. Therefore, we see that the
adaptive antenna is configured as a sidelobe canceller. After multiplication by the weighted Butler
matrix the, ,, k= 2, ..., N are ordered from largest to smallest based on their individual powers.
Next the L — 1, w, k=2, ..., L voltages with the largest powers are sclected as the inputs, x,,
k=2, ..., Lto the sidelobe canceller.

N ANTENNA ELEMENT VOLTAGES

EIGHTED

WEIGH
BUTLER MATRIX

Fig. 3 — Functional block diagram of
Uyl up us‘ LR u,,‘ subarraying algorithm

SELECT INPUTS WiTH
LARGEST POWER

X, xt x; 200 XL

SIDELOBE CANCELLER

The largest powers of the outputs were chosen based on the analysis rendered in Appendixes A
and B and the next section. There we demonstrate empirically (and analytically in a specific case) that
the sidelobe canceller suffers minimum loss in signal-to-noise ratio if the largest powers of the outputs
of the weighted Butler matrix transformation are selected.

It is evident from the procedure defined that the number, L, of subarray outputs can be a vari-
able. For example, if there are only N, spatially distinct narrowband jammers then L = N,. Also, if
we set a power threshold such that only those outputs, u,, k = 2, ..., N that exceed this threshold are
chosen, then L will be a function of the threshold, the noise environment, and the sidelobe levels that
result from weighting the Butler matrix.

RESULTS

One of the costs of subarraying is the maximum signal-to-noise ratio that is possible, (S/N),.

degrades from the maximum signal-to-noise ratio, (5/N), that is possible with no subarraying. We
define this loss to be
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where |- | denotes absolute value. We demonstrate that using the subarraying scheme described in the
previous section for the cases considered results in a small loss.

(Lo gp =

Let us first consider the following optimization problem: given that there is a narrowband jammer
0, degrees off-boresight with jamming power &} normalized to the internal noise power, what 2 x N
subarray transformation using a partition of the Butler matrix with uniform weights results in the
minimum subarray (S/N) loss, Ly,?

In more mathematical terms, if

H=5 12
where .
1 1 1 1 e 1
B, =~ —‘/--7\]- 1 /% e-mk e“”“’l*n s as
and 2A
.'Ilk-%-k. k=12, ..., N-1, (14)

then what value of the integer k results in the minimum loss as defined by Eq. (11)? Note B, is a par-
tition of the Butler matrix, B.

For this problem, expressions for (S/N),, and (§/N) are derived in Appendix A (also in this
appendix an equivalent transform to the one seen in Fig. 1 is derived and it is shown in general that for
any subarray transformation, (S§/N),, can be found directly from the formulated expression of
(S/N)). These expressions were used in Appendix B to show that k should be chosen to minimize
|¢ — ¥, |, where ¢ = (2rd/r)sin8. Hence, ¥, should be selected as close to the value of ¢ as possi-
ble to obtain the minimum S/N loss.

1t is also shown in Appendix B that if a 2 x N weighted Butler matrix is used such that I¢ — ¢, |
is a minimum, and NG} >> 1 then the maximum S/ N loss in dB is approximately

(LMAX )45 = 10.716]|2 (@) |12 dB, a5s)

where | N=l
#(p) = N ‘Z‘b Q41 €49, (16)
and |- || denotes complex magnitude. Note that the quiescent (no jamming) antenna pattern can be
defined in terms of @,, k = 1, ..., Nand is equal to {|Z(a){[? if we normalize all antenna gains to the

mainbeam gain of a uniformly weighted array. a = (2d/)A) sing and 8 is an arbitrary angle off-
boresight. We see from Eq. (15) that the (S/N) loss in dB will be small if the jamamer is located in the
sidelobes and is proportional to the normalized antenna gain in the direction of the jammer. For exam-
ple, if the quiescent normalized antenna gain in the direction of the jammer is ~20 dB, then the (S/N)
loss calculated using Eq. (15) is approximately no greater than 0.1 dB.

To further illustrate that choosing the k that minimizes |¢ — ¢, | resuits in the minimum S/N loss
we have plotted this loss vskand ¢, k = 1,2, ..., N~1 for the following cases:
1. N=8, L=12,0,=10° (Fig. 4),
2. N=16, L =2 0,=10° (Fig. 5,

3. N=16, L =2 0,=45° (Fig. 6).
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35,
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Fig. 6 —~ Subarray loss vs k. N = 16, 8, = 45°

0

In these cases, a uniformly weighted Butler matrix is used. We see from Figs. 4, 5, and 6 that indeed
the minimum (S/N) loss occurs when |¢ — #,| is a minimum. For cases 1 and 2, ¢ = 31° and for
case 3, ¢ = 127° Note from comparing the curves of Fig. 5 with Fig. 6, that the minimum loss is
greater as the jammer’s direction of arrival (DOA) moves closer to boresight. This observation is
predicted by Eq. (15).

Now consider the case where there are two jammers and the number of antenna elements is 36.
Both jammers have &} =20 dB power and the first jammer is 8, = 25 ° off-boresight. Let us vary the
DOA, 9,3, of the second jammer from 0° to 90° off-boresight and subarray using a 3 x N uniformly
weighted partitioned Butler matrix, such that

111 1
—jby, 2wk —(N=1)j#,
B,=]1e e b oo e . 17
o T, Ul

In the above equation ¥, = (2w/N)k,, by, = (2n/N)k, and k,, k; are chosen to minimize
l¢) = wi,| and ld2 — @y, | (6, = 31° ¢, = sind,) such that k, = k, (note if k; = k; then the H
transformation is of rank 2 which renders the calculation of the (S/N) loss impossible because of the

necessity of inverting a singular matrix; see Appendix A, Eq. (AS)). If it results that k, = k,, then we
choose ky = k; + 1 or k= k; — [ such that k, = 0 MOD (M.

The resultant (S/N) loss is graphed in Fig. 7. We have not attempted to plot Lgy for every 6,
but have plotted Lag in increments of A@, = 1°. First note that in the sidelobes for this case that the
average loss is small (= 0.008 dB). Secondly, the loss becomes larger as the second jammer moves
through the boresight of the antenna. This is not unexpected because the null in the direction of the
jammer also nulls the desired signal as the null is placed closer to the main beam. Hence a loss of
(S/N) performance occurs.

The undulating nature of the subarray loss is due to the undulating nature of |¢, — 'h,l- A plot
of |¢; — ¥,,| appears in Fig. 8. As |¢, - Wi, | increases, the subarray loss becomes larger because the
phase, ¢,. is not centered on one of the discrete angles, (2#/N) - k, k=1, 2, ..., N~ 1. Also note
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Fig. 7 — Subarray loss v50;, 6 = 25°, N =36, L = 3,
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in Fig. 7 that as the second jammer angle passes thru the first jammer angle (8, = 259, there is at first
a very small (S/N) loss (= 0.0016 dB) but then a noticeably large (S/N) loss (=0.19 dB). We will
explain this phenomenon in a future report.

Bohn g

' ADVANTAGES AND FUTURE STUDIES
Some of the major advantages of subarraying as described in the preceding sections are that:

1. it reduces the dimensionalhty of the sidelobe canceller processor which reduces the
amount of necessary hardware,

2. it effectively cancels sidelobe jamming without significant degradation of the output
signal-to-noise ratio,
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3. reduction of the dimensionality of the sidelobe canceller decreases the convergence time
of the sidelobe canceller (for the matrix inversion algorithm [1] convergence rate is pro-
portional to the dimensionality),

4. convergence time of the sidelobe cancelier is independent of the size of the array; it is
proportional to the number of jammers,

S.  orthogonalization of the channels allows the theoretical convergence time to be achieved
since the loops are now almost independent and do not interact,

6. the effect of the bandwidth-aperture product is reduced since all the elements of the
antenna are used to form the reduced number of inputs to the sidelobe cancelier.

The third advantage mentioned above results because if the direct matrix inversion algorithm [9] is
used to compute the optimal weights, then the average number of samples of each subarray output
required, such that the average output signal-to-noise ratio is within 3 dB of the optimum subarrayed
signal-to-noise ratio, is equal to 2L where L is the number of subarrayed outputs. If we do not use
subarraying but use the entire array then the number of samples of each array output needed is 2N.
Obviously if L << N, then the number of samples needed when subarraying is much less when not
subarraying. Hence, the convergence rate will be faster. (Note that it ‘is as assumed that the samples
are from time independent zero-mean Gaussian processes.)

The fourth advantage is true under the assumption that we are thresholding the powers of the
individual output channels of the weighted Butler transformation.

Future studies will be directed into investigating the effect of random errors in the antenna ele-
ments. We have assumed in our analysis that all of the antenna elements are identical. In practical
cases this is not true. There will be small random phasor errors which multiply the outputs of the indi-
vidual antenna elements. These random errors will degrade S/N performance and upper bound the
maximum S/N.

A second study will be undertaken to investigate the effects of the jammer bandwidth-antenna
aperture product on the subarry’s performance. Since this product inherently limits the performance
of a totally adaptive array, it may or may not further limit the performance of a subarrayed adaptive
antenna where we subarray using a weighted Butler matrix.
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Appendix A
EQUIVALENT TRANSFORMATIONS FOR SUBARRAYS

In this appendix, we prove that the subarraying transformation as seen in Fig. Al is equivalent to
the transformation seen in Fig. A2 in that the resultant maximum signal-to-noise ratios are the same.
The H transformation seen in Fig. Al is an L x N matrix and has rank L.

The transformation viewed in Fig. A1 works as follows: the internal (thermal noise) and external
inputs add at the front end (the antenna elements) after which an L X N matrix transformation reduces
the N inputs to L outpu.s (L < N). Finally, these L outputs are optimally weighted such that the
maximum signal-to-noise ratio is achieved.

The transformation as seen in Fig. A2 is not actually realizable because here we are separating the
internal noises from the external noises and operating on them separately. This transformation works
as follows: the N external inputs are multiplied by an N x N matrix P where P = H'(HH)"' H and
denotes conjugate transpose. The outputs of this transformation are then added to the internal inputs
(thermal noise of the same rms power as the thermal noise seen in Fig. Al). Finally, the resultant N
outputs are optimally weighted.

Let X represent the noise vector of N external antenna inputs, n represent the vector of N inter-
nal noise sources, and ¥V represent the total noise vector. Obviously

H SUBARRAY TRANSFORM P TRANSFORM
Pant(Hnt) i
y % e o o . - n! e *o o : +)
h L " N
(I L7 i
OPTIMAL WEIBHTING OPTIMAL WEIGHTING ]

. Ea). I,
!
!
i Fig. Al — Subarray transformation Fig. A2 — Equivalent transformation
)
1

V=X+3 (A1)
and — —_—
E{VV) = E(XX1 + E(3%1, (A2)

assuming the internal noise processes are zero mean and independent of the external noises. Further-
more, let the internal noise sources be statistically independent and identically distributed with noise
power equal to o4. Thus
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Elnn')=od / (A3)

where /is the N x N identity matrix. If we set M = E{¥V] and M, = E{XX], then
M - O'gl + MJ. (A‘)
If S represents the input signal vector, then it can be shown [Al_] that the maximum signal-to-noise

ratio, (§/N), that is possible by properly weighting the outputs, Y, of the subarray transformation as
seen in Fig. Al is '

[%l = S'H'(HMH)"HS. (AS)
|

We can also show that the maximum signal-to-noise ratio, (§/N),, that is possible by properly weight-
ing the output, Z, as seen in Fig. A2 is

[%L - SIM;'S,, (A6)
where

S, = PS, (A7)

M, = o3l + PM,P" (A8)
and

P = H'(HH)"'H. (A9)

We will show that (S/N); = (§/N),.

To this end, let us normalize the covariance matrices to the internal noise power such that

M=1+M,, (A10)
and
- 1
My = — M. (AlD)
0
It is easy to show that
S o L s sy S, (A12)
N 1 03
and
S| oL g
N, = f S S, (A13)
where :
M, = I + PM,P". (A14)
We write (S/N), in a more expanded form
S | R
=| = — S'P'M;'PS. (A15)
l” ]z of ?
13
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We prove that (S/N), = (S/N), by showing that
H'(HMHY'H = P'M;’'P. (A16)

Before we do this, let us state that it can be shown that P is an idempotent matrix, i.c., P2 = P and
therefore singular for N 2 2. In addition P is hermitian, P = P

We prove the identity of Eq. (A16) by considering the left-hand side of the equation. Now using
(A10)

(HMH)™ = (HH' + HM;H)"". (A17)

Invoking the matrix inversion lemma [A2] we can show
(HH'+ HM;H)"' = (HH)™" — (HH)"'HM,(1 + H'(HH)"'HM,)"' H'(HH"™'  (A18)

Hence, using Eq. (A9) it follows that
H'(HH' + HM;H)"'H = P — PM,(I + PM,)"'P. (A19)

Now consider the right-hand side of Eq. (A16). Equation (A14) implies that
M;\ = (I + PM,P)"". (A20)

Again using the matrix inversion lemma, we can show
(I + PM,P)"' = [ ~ PM,(I + P'PM,)'P". (A21)
Since PP = P. P! = P,and P = P'then
PU + PM;P)"'P'= P ~ PM,(I + PM,)"'P'. (A22)

Comparing Eq. (A19) with Eq. (A22), we see that Eq. (A16) follows, and thus, (S/N), = (S/N),.
Hence, the configurations of Figs. Al and A2 are equivalent in that the resultant maximum signal-to-
noise ratios are identical.

This equivalency can be effectively utilized as follows. Suppose there are K external noise sources

with respective direction-of-arrival vectors (DOAV), 4,, and powers o2, k = 1, ..., K. If there is no
subarraying as seen in Fig. Al we can derive an expression for the optimal signal-to-noise ratio, (S$/N),
which is a function of 4, o, k = 1, ... K and the steering vector S such that

'%I-F(m, eiis Aol ... o}, 0. S), (A23)

where F is the functional relationship between the inputs and S/N. In order to find the maximum
signal-to-noise ratio (S/N), of an array that has a subarray transformation we use the equivalency of
the configuration in Fig. A2 to show that

%l = F(PA,. .... PAx. o}, ... o}, ad. PS). (A24)
t

Equation (A24) follows because the (S5/N) as expressed by Eq. (A23) holds for any K arbitrary
external input noise veclors, steering vector, and noise powers. Hence, after the transformation by P,
the external input noise vectors are PA,, k=1, ..., K, the external input noise powers are
unchanged, and the steering vector is PS. For example, if there is only one narrowband noise source
with DOAV, 4. and power o {, we can show that if subarraying is mor used, then
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S 1 of

2 - ISIR~ ———————||5"4,|3]. A2S

INL«‘ poy [“ ] eI T oA, sl (A25)
where ||- || denotes complex magnitude. Now if we place a subarray transformation, H, between the

antenna elements and the optimal weights, Eq. (A24) implies that in order to find the optimal subar-
rayed signal-to-noise ratio, we replace 4, with P4, and S with PSin Eq. (A24). This results in

[”]: of l”Ps“ of + afA{PA, “S“'“]' (A26)

To derive (S/N), in Eq. (A26), we used the fact that PP' = P.
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Appendix B
OPTIMAL 2 x N BUTLER SUBARRAY TRANSFORMATION

In this appendix, we find the optimal 2 x N Butler subarray transformation. The transformation
is optimal in the sense that the signal-to-noise ratio loss that is incurred by subarraying using a 2 x N
partition of a Butler matrix is minimized. We also derive suboptimal 2 x N weighted Butler matrix
transformations where it is shown that subarraying loss, although not optimal, is small and within easily
computed bounds.

Let us define a subarray transformation, H, as follows:

H=8, (B1)
where
| 11 1 |
iy R | (B2)
and
w"__Z_gr_." n=12 ..., N—1. (B3)

N

Note that B, is a partition of a Butler matrix. We are given that the N length signal vector, S, is
defined as

S=01..D7¢} - (B4)

for an uniformly weighted array, which indicates that the mainbeam is pointing in the direction of
boresight. In Eq. (B4), o'} is the received power of the desired signal at each antenna element. Note
that multiplying the N array antenna inputs by H results in two channels. One channel will be the main
channel in that it is matched to the steering vector. In the main channel, energy received at an angle 8
off boresight will have the following gain (or antenna pattern):

N=)

gla) = ke (BSa)
o ka e

where a = (2wd/\g) sinf, d is the linear array spacing, and Aq is the wavelength. The auxiliary chan-
nel (the second channel) will have the antenna pattern

N~1|
(@)= 3 o (BSb)
&)= 3
=gla~y,).

If there is one external jammer with power o § and direction-of-arrival vector
A= (1 e% ¥, , eN-1i$)T (B6)

where ¢ = (27 d/)o) sin@ and 0 is the angie off-boresight of the jammer, we would like to know for
what value of ¢, is the output signal-to-noise ratio maximized. We will show that ¢, should be chosen
as close to the value of ¢ as possible. Also, we show that for arbitrary N, choosing ¢, in this fashion

16
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results in a small signal-to-noise ratio loss from the maximum signal-to-noise ratio that is possible if no
subarraying is used.

Let us normalize the jammer noise power to the imernal noise power, oé:

.2 7
03 (87)

We use the result, Eq. (A25), of Appendix A to show that the maximum signal-to-noise ratio, (§/N),
possible if subarraying is not used is

||S||2 &; 115412
. B8)
[ l T YT AIRs] IsIE (
Substituting |1S|]1> = Nad, ||4]|> = N, and S'4 = g(¢)o s we find that
N"s ¢]  llg@)|P
. (B9
[ l 1+Ne] N )

We see that for Na} >> 1 and ||g(@)1]* << . N? which is true if the jammer is in the sidelobes, then

s|. Noi
2l ) Bl
Nl >7 (B10)

If subarraying is used, then using Eq. (A26), the maximum attainable signal-to-noise ratio, (S/N) is

IPsIl’ - 91 llesyea|i? B
| + ||P4ll3e} liprsli2
where
P = H(HH")'H = B)B,. (B12)
It is straightforward to show that
PS = §, (B13)
[1PS||? = Nad, (B14)
and
| =~ 1 =
PA = Ng(do)l +5 gld —¥IAL, (B15)
where 1 is an N length vector such that
T=Q1..D7 (B16)

and A, is an N x N diagonal matrix such that A, = (Ay,) and

Ay = /%=1, @17
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Using Eq. (B15) we can show that
1PA4|I = 7:,7 U@ RN + g* @)@ — WTA,T (B18)

+g(d)g* (¢ — $IT'AJT
+ llgle = WAL ATI
= S Ulz@)11+ llgle ~ )11

+ 7\2’7 Re{g*(@)e(® - w)gp)),
and that

|1(PS)!(PA)||? = l||g(¢)||2 + -;/—2 g W) 12l1g(d — )12 (B19)
+ -i; Relg*(@)gW)g(d — &)}' -ad.

If we set ¢ =y, where ¢, is defined by Eq. (B3), then g(y,) = 0 and we can write (§/N),,, using
Eqs. (B14), (B18), and (B19) as

2 2
lil - N‘Tzs | - — “3(?)“ =. (B20)
Nl o6 Ne72+ llg@) iR+ g — g

We see that maximizing (S/N)g, as a function of ¢, is equivalent to minimizing the second term of
Eq. (B20). This term is minimized when |lg(¢ — y,)|]? is maximized. This occurs due to the nature
of llgla)|l? = (sin Na/2)/sin?(a/2) when ¥, is chosen to be the nearest value of w,,
n=1 ..., N~ 1, to¢. Let this value be Y-

In order to evaluate the signal-to-noise ratio loss incurred by subarraying we define
(S/N)ewp

——('FN—)—. (B21)

Lsub -

Using (B10) and (B20) we see that for Né} >> |

Lyy=1~ lle(@)ll2 : (B22)
sub Ne7 + lig@) 1 + (Ig(@ ~ $mao) |17

The maximum loss will occur when ¢ is located equidistant between ¢, and ¢,.;. This occurs
because |1g(é ~ ¥max) |1? is monotonically decreasing in the region $,_; < ¢ < Ts,,. where ¢, = $nux-
Hence, since ¢ — ¥pe, can be at most o/ N and L,,, decreases as |/g(¢ — ¥nm,,) ||? decreases, then the
maximum loss occurs when

&~ Vm ™= % (B23)
Therefore, w
Sin — 2
lg@ ~ b = —2- 20 (B24)
sin =——

N
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In Eq. (B24), we assumed that #/2N << 1. Hence,

2
LMAX = llg@)] - (B25)
llg(¢)||’ + Nejt+ =

We see that if the jammer is in the far sidelobes then 4N¥/#2 >> ||g(¢)!|? and

2
Laax o g - —le@l (B26)

1
NGj i+ —- 4"
1l’

Equation (B26) implies that the signal-to-noise ratio loss will be small. In order to calculate the max-
imum loss in dB we use the approximation that for small €

10 §

10 Iog.o(l €) =-— Tmt dB. 2 )
Hence, 4 ]

{ 10 Ilg @)

MAX AL

(LM ) gp = n10 - _2 4N2 dB (B27) L

No 1

10 g @12
In10 dB

a2 4
(NO’}) '+ —
w

where we have normalized ||z (¢)!|]? to have a maximum value of one. More explicitly

- i 0 sinzM

' Hg@))P = o — 2, (B28)
\ N sm’i
_ ' For N6} << 4/#?, Eq. (B28) reduces to
; (LMAX) 5 = 10.716 ||z () |12 dB. (B29)
B N

The above results can easily be extended to include steering the mainbeam off-boresight and
weighting the antenna elements to obtain a given level of sidelobes, beamwidth, etc. However, the
adaptive array with no subarraying must also have the same quiescent antenna pattern determined by
the quiescent weighting when calculating the subarray signal-to-noise ratio loss.

In addition, if
N-1
g(¢) = § Ay %, (B30)
P

where a, are the quiescent weights which determine the antenna steering, sidelobe level, etc., then
£{¢,) is not necessarily equal to zero and hence Eq.(B20) is not exactly true. However, we can show
that the terms that went to zero in Eqs. (B18) and (B19) are small compared to the other terms so that
Eq. (B20) is approximately equal t0 the maximum signal-to-noise ratio.

In any case, if ¢, is chosen to be closest to ¢, then Eq. (B29) follows where

1 N-1
(@) = — e (B31)




DATE
FILMED




